Dear Professor Einstein

Albert-EinsteinAs arguably the most important intellectual of his time, Albert Einstein exchanged letters with powerful contemporaries: fellow scientists, heads of state, dignitaries, philosophers. But what most might not know is that he also corresponded with children around the world.  That’s right–curious children would write and Einstein would reply, even at the height of his career and influence. Their letters back and forth are touching, honest, often hilarious but also poignant, thanks to the tone Einstein took with every note, never talking down to the children. A selection of these can be found in the book Dear Professor Einstein: Albert Einstein’s Letters to and from Children, as well as a sprinkling below.

In a 1920 response to the question of what he looked like, Einstein wrote

Let me tell you what I look like: pale face, long hair, and a tiny beginning of a paunch. In addition, an awkward gait, and a cigar in the mouth … and a pen in pocket or hand. But crooked legs and warts he does not have, and so is quite handsome – also no hair on his hands as is so often found with ugly men.

In 1943, a young girl wrote to Einstein about her difficulties with mathematics in school. He encouragingly replied

Do not worry about your difficulties in Mathematics. I can assure you mine are still greater.
Best regards
Professor Albert Einstein.

Read the rest of this entry »


The World According to Isaac Asimov

If you’re anything like the average employee at eNotes headquarters, you’re probably still drooling over the forthcoming generation of Apple iPhones. So allow me to ease you out of your reverie with a fun retrospect of how our bright future was predicted near perfectly almost 50 years ago.

isaac-asimov

Back in 1964, the Jetsons were on television, the lava lamp had just been invented, and the Moon was as yet uncharted territory. Isaac Asimov was also a popular science fiction writer of the time, though it was still six years before he would write his most famous short story “I, Robot.” Instead, he wrote an essay for the New York Times in which he imagined a trip to the World’s Fair of 2014, five decades into the future. On the brink of that very event and in the middle of a whirlwind of technological advancement, let’s take a look at five of the astounding predictions Asimov made for the 21st century:

Lighting 

The brave new world would apparently be designed without windows in mind.

One thought that occurs to me is that men will continue to withdraw from nature in order to create an environment that will suit them better. By 2014, electroluminescent panels will be in common use. Ceilings and walls will glow softly, and in a variety of colors that will change at the touch of a push button.

Windows need be no more than an archaic touch, and even when present will be polarized to block out the harsh sunlight. The degree of opacity of the glass may even be made to alter automatically in accordance with the intensity of the light falling upon it.

60s futurism glassesSorry Asimov, but for the most part we still look to good old window dressings to block out the sunlight. We do, however, have polarized transition lenses in our eyewear. Though I believe science is still trying to work out a way that won’t leave one with permanently halfway-tinted glasses in your averagely lit room…

There is an underground house at the fair which is a sign of the future. if its windows are not polarized, they can nevertheless alter the “scenery” by changes in lighting. Suburban houses underground, with easily controlled temperature, free from the vicissitudes of weather, with air cleaned and light controlled, should be fairly common.

Once again we’ve wasted one of Asimov’s completely practical ideas by employing it for needlessly decadent purposes, like having a casino in Vegas that’s lit to make you feel like you’re walking the streets of Paris… but hey, it’s something.

Food Preparation

Gadgetry will continue to relieve mankind of tedious jobs. Kitchen units will be devised that will prepare “automeals,” heating water and converting it to coffee; toasting bread; frying, poaching or scrambling eggs, grilling bacon, and so on. Breakfasts will be “ordered” the night before to be ready by a specified hour the next morning. Complete lunches and dinners, with the food semiprepared, will be stored in the freezer until ready for processing.

Read the rest of this entry »


A Chemical Test-Drive: Fun with Chem-E Cars

Wilson, eNotes’ Math and Science intern, shares his experiences of creating a car from scratch and racing it in a statewide contest. Science nerds, prepare to freak out!

The day finally came. After hours and hours of testing, we were finally ready to have our miniature car compete with those of 10 other California universities, including Stanford, UC Davis, UC Berkeley, and San Jose State, at the Chem-E (Chemical Engineering) Car competition hosted over the weekend at UC San Diego.

The requirements were that this car should be relatively light, be powered by a chemical reaction of our choice, be able to have a time-dependent braking mechanism, and be able to carry a certain amount of weight (water) across a certain distance in under 2 minutes.

Our “Bruin Car” ran off of an electric motor powered by a hydrogen fuel cell, which was supplied hydrogen using a chemical reaction between hydrochloric acid and magnesium. The braking mechanism was an iodine clock reaction that would interfere with the transmittance of light onto the photoresistor in our circuit; thus, when the solution turned completely dark, the photoresistor’s resistance would increase, causing the current to drop and cut off the source of electricity to our electric motor.

945715_10200769281252738_188284000_n

Read the rest of this entry »


A Day in the Life of a Student Researcher

Are you studying for a career in the sciences? Not sure where to begin to gather that lab experience that is oh so important for obtaining your degree and landing a great job? Our Math and Science intern Wilson shares his experiences of finding his place as a student researcher and shares the four lessons he’s learnt both inside and outside of the lab.

Lab work doesn’t always involve looking down the lens of a microscope, one thing I learnt in my work as a student researcher studying autism spectrum disorders in children.

For almost 2 years now, I have been a student researcher at UCLA studying the physiology of anxiety in youth with autism spectrum disorders. This position has opened my eyes up to the professional, research-oriented community and taught me to dismiss some of the common misconceptions I had before I received this opportunity. Here are a few things I learned on my way to becoming a student researcher.

Read the rest of this entry »


Blinded by Science

How eNotes’ Math and Science intern overcame his trouble with the sciences and learned to love his Biochemistry major.

Science: the subject that many find so difficult to understand (and so boring to even attempt to understand) that they just dread learning about it, dread having to sit in class and listen to the teacher ramble on about atoms and cells and forces of nature. In high school, I used to be the type of student who wanted to ditch my chemistry and biology class. Seriously, who wants to hang around periodic tables and posters of cellular structures all day, and then have to study so hard just to learn on the test that you understood almost nothing? However, when I started college and began studying for my biochemistry degree (being Asian, I was heavily influenced to become a doctor), I began to realize why so many of us perform poorly in and, for some, even fear science. A 3rd year into my studies now, let me share with you my experience of overcoming the negative attitude and eventually growing to love this subject.

Screen Shot 2013-04-09 at 4.30.57 PM

“Why do I need to learn this? When am I ever going to use this information in my lifetime?” These are questions that we’ve all asked at some point in our scientific studies. In fact, the professor of my public speaking course raised this question just 2 days ago, referring to the sciences. This is one of the many reasons that science classes may seem so difficult and scary. It seems so arbitrary and foreign to us, like learning a whole new language that we will never use, and school fails in making it seem less frightening, in making it more familiar. Instead, we are driven away by how test-oriented the material is and the amount of memorization that is required.

My love for the sciences began in my first physics and chemistry courses. We were learning about exothermic (release of heat) chemical reactions and kinetic energy. Sure, I understand that when favorable chemical reactions naturally occur spontaneously go towards products and release energy as heat, but what does this mean and why do I care? Out of frustration in how poorly I was doing in the class, I decided to approach learning science through another method. I began to explore where these concepts occur in my everyday world and that’s when I stumbled across explosions. Those beautiful explosions seen in fireworks and those awesomely crazy explosions seen in action movies can all be fundamentally explained by the basic concept of exothermic reactions. All that force, heat/light, and fire that we see as a result of an explosion is all due to a chemical reaction that releases a lot of heat, causing the rapid expansion of air molecules. How cool is that?! All that insanity due simply to a sudden, quick expansion of air molecules that help transfer heat! I’d never thought something so simple can be responsible for what we see in fireworks and explosions. This is when I realized that I can make science a lot easier and a lot more interesting to understand.

Over the last few years, I stumbled across more interesting applications of the concepts I was learning in class. In quantum mechanics, I learned that teleportation is possible and that scientists have already teleported incredibly small particles from one island to another (shout out to all those Star Trek fans who fantasize about traveling from one place to another in a matter of seconds). In physics and chemistry, I discovered the most efficient way to drive a car, meaning I can now consistently get above 40 miles per gallon in my 1996 Honda Civic, which is incredible considering that a lot of fuel efficient cars these days average about only 32 miles per gallon.

The main point I’m trying to get at is learn how the science can be applied and try to relate it to a phenomenon that you find fascinating, especially if you are someone who is currently struggling in your science courses as I did (my GPA actually dropped below a 3.0 when I started college). Explore the internet and answer that question your little voice keeps asking in your head, “When am I ever going to use this?” It’s what led me to finding better and easier ways to perform simple tasks, such as driving, cooking, and fixing broken appliances. Although it may be true that science comes more naturally for those who are left brain dominant, all you need to do is be creative and find some way to connect that scientific concept to something that really interests you, and you don’t need to be an Einstein to make that happen. In fact, that’s how most of us learn in other subjects, but science just seems so foreign at first that it’s hard to take that first, eye-opening step. Once you take that step, though, you’ll begin to realize all beautiful ideas and revolutionary technology arise from surprisingly simple concepts with a bit of imagination and experimentation. It’s what allows for the possibility of teleportation, the possibility of substituting electricity with quantum particles to make computing millions of times faster, the possibility of finding cures for life-threatening diseases, and the possibility of traveling through space and time. That’s pretty awesome if you ask me.

So, as Jesse Pinkman expresses it in Breaking Bad, “Yeah, science!”


Follow

Get every new post delivered to your Inbox.

Join 804 other followers