The Enchantress of Numbers

The curious tale of the world’s first computer programmer.

Today I stray a little from the ordinary literary and educational news updates, after coming across a nod to an exceptional woman I couldn’t pass the day without commemorating, not only for her role in mathematics, but also for her role as a woman in mathematics, far ahead of her time. I hope that her story inspires women in the sciences, or indeed anyone who perseveres to think beyond the capabilities of modern technology.

Sadly I’m usually behind the times on Google’s artistic and quirky depictions of special days via their homepage. But today, gmail just happened to crash, sending me to the Google homepage where I saw the below image:

I was curious. Who was this woman in 19th century garb, scribbling mathematical functions with quill and ink? And so, by way of technological error, I learned of Ada Lovelace, the world’s first computer programmer.

Ada Lovelace was born on December 10th, 1815, to the poet Lord Byron and his wife Anna Isabella Byron. She had a miserable childhood, considered a disappointment from birth for not having been born a boy. Ada was abandoned by her father before she was a month old and resultantly never knew him, as he died abroad when she was eight. Meanwhile her mother chose to keep little connection with her, possibly because young Ada reminded her of her devious husband, with whom the Baroness had an acrimonious divorce. So Ada was raised by elderly relatives and relegated to a life of suspicious observation via her mother’s friends, dubbed “the Furies.” Fortunately for us, though, she was also subject to a life of education–intended to squash any deviation she might have inherited from her father–and took a keen interest in mathematics from a young age.

Around the age of seventeen, Ada’s special abilities became clear to her tutors, all famed in mathematics in their own right. The noted mathematician Augustus de Morgan even reported of Ada to her mother that she seemed destined to become, “an original mathematical investigator, perhaps of first-rate eminence.” Meanwhile another one of Ada’s instructors and friends, Mary Somerville, introduced her to Charles Babbage, future inventor of the world’s first computer. Ada was not yet eighteen at the time.

Babbage and Ada thus began a friendship that produced their academic collaboration on the former’s Analytical Engine. In 1843, Ada translated Italian mathematician Luigi Meanabrea’s explanation of the machine, complete with her own set of notes and conclusions (which were actually longer than Menabrea’s). In her depiction of the Analytical Engine, Ada imagined its potential as being greater than simple “number crunching,” something not even Babbage indulged in. She wrote:

[The Analytical Engine] might act upon other things besides number, were objects found whose mutual fundamental relations could be expressed by those of the abstract science of operations, and which should be also susceptible of adaptations to the action of the operating notation and mechanism of the engine…

Supposing, for instance, that the fundamental relations of pitched sounds in the science of harmony and of musical composition were susceptible of such expression and adaptations, the engine might compose elaborate and scientific pieces of music of any degree of complexity or extent.

Along with these forward-thinking notes, Ada wrote “a computation of Bernoulli numbers for the Analytical Engine” (below). It is this part of her thesis, “Note G,” that is universally considered to be the world’s first computer program, making Ada correspondingly its first programmer.

So there you have it: the world’s first techie was a noble lady, The Right Honourable Countess of Lovelace. That means that on this day, as you browse the Internet in search of Google poetry, GIFs, or the Ikea Monkey, you have Miss Ada Lovelace to thank for her place in imagining the capability of computers to change our lives in the myriad of ways they have today.

Ada was such an interesting woman, there is only so much of her life I could include in this post. I highly recommend her Wikipedia entry as an overview of her amazing achievements and somewhat scandalous personal affairs. In her mere thirty-six years, Ada gave us much to appreciate and stands as a prime example of the role women have played in science and technology, though they are often overlooked. She truly lived up to Charles Babbage’s nickname for her, “The Enchantress of Numbers”:

Forget this world and all its troubles and if
possible its multitudinous Charlatans – every thing
in short but the Enchantress of Numbers.

Related:

Teachers, instruct your students on the history of “The Enchantress of Numbers” with eNotes’ document on Ada Lovelace, found here. It comes with an activity to help students write their very own programs and is recommended for Grades 4-8.


Why Children Make the Best Scientists

The intersection of science and play.

We are taught from a young age that authority in any academic realm must be allocated to adults only–or more specifically grey haired men in tweed jackets staring down their noses at us from in front of a chalkboard or behind a cluttered desk. But when we think about the fundamentals of Science, a field that in its research requires constant questioning and experimentation, who better to contribute to its innovation than the naturally curious? In his TED talk above, neuroscientist Beau Lotto tells why children make the best scientists.

Evolution’s solution to uncertainty is play… Play is the only human endeavor where uncertainty is celebrated. When you add rules to play, you have a game. And that’s what an experiment is–a game…

Armed with these two ideas that science is a way of being and experiments are play, we asked, “Can anyone become a scientist?” And who better to ask than twenty-five 8-10 year old children? Because they’re experts in play.

With this idea in mind, Lotto turned to a primary school in Devon, England, to create a program in which children would be given the opportunity to act as scientists. He was granted no funding for this idea, as “scientists said children couldn’t make a strong contribution to science, and teachers said kids couldn’t do it.” Teachers, if you can believe it, had no faith in the capabilities of young people. Lotto went through with it anyway.

His first step in the program was to have the students ask questions. The results?

Five of the questions the students came up with were questions that were the basis of science publication in the last 5-15 years. They were asking questions that were significant to expert scientists.

This gave Lotto and his colleagues the impetus to turn the group of children into full-fledged scientists, an idea that amazingly resulted in the peer-reviewed publication of 10-year old Amy O’Toole’s science paper. She joins Lotto onstage to describe the inspiring journey from early hypothesis to academic acceptance.

I strongly suggest you watch this video, if not to be inspired by the true capabilities of children (despite the misgivings of teachers, scientists, and most adults), then to rethink how good scientific thought requires our embrace of uncertainty.

 


Powering Up: Social Media and the New Classroom

Just a few years ago, when kids began having their own phones in large numbers, schools freaked out. At my daughter’s junior high, phones had to be hidden away in backpacks or lockers. Any teacher who observed a student with a phone was required to seize it. The phone was then taken to the office, and there was a $15 fine to get it out of hock.

Two years later, my son is now in the same junior high. Phones and other electronic devices are no longer pariahs; in fact, students are encouraged to bring their personal phones or iPads. Teachers can request that their students use them during all kinds of lessons, from geography to science, even English, to look up quotes or biographical information. Students can also use their phones during “passing periods” and at lunch. (I suspect there will be a lot more fund raisers this year, seeing as how the cash cow of phone seizing is no longer being milked. )

Of course, it isn’t just the fact that teachers and administrators are tired of fighting the ubiquitous phones and their larger cousins. Slowly, educators are realizing the benefits of social media. And, as those in charge learn more about the remarkable versatility of the internet, the applications are becoming an integral part of the students’ learning experience, arguably making them more engaged and interactive than ever before. Sites like Facebook, Twitter, Tumblr, and even one of the relatively new social media sites, Pinterest, are giving education a much-needed boost.

Here are a few of the ways educators are employing the power and persuasion of social media:

Twitter:  “Teachers have been setting up subject or class Twitter accounts that students can follow. The teacher then tweets information related to their class. Some even set homework via Twitter,” reports The Guardian, in their article “Social media for schools: A guide to Twitter, Facebook, and Pinterest.” Twitter, as many have discovered, is also often the fastest way to find out about breaking news.

Facebook:  I have often asked my own students to post a specific status and have their friends respond. Then, the following class period, we discuss those responses. For example, I recently had them read Hal Niedzviecki’s New York Times article, “Facebook in a Crowd.” Niedzviecki wonders what would happen if he invited many of his “virtual” friends to a real life cocktail party. Of the several hundred invitations, twenty people accepted; one actually showed up. I asked my students to post as their status, “Is a virtual friend a “real” friend?” We had a lively discussion that could not have happened otherwise.

Pinterest:  Not just a place to “pin” your favorite recipes or cute cat photos. Many teachers have found great success, especially for their highly visual learners, using Pinterest’s “Tutorials.” Here, among other things, you can learn, step-by-step, how to create QR codes, or become more proficient in Photoshop, or learn how a touchscreen works.

Tumblr:  Again, a great site for students and educators. More and more companies have begun to “tumbl,” as it is a great way to find archival materials as well as current news and discussions. Some of my favorites, which I often use to prepare lectures, are the tumblrs of “The Paris Review,” Life Magazine, the New York Public Library,  NPR’s Fresh Airand, of course, eNotes

How do YOU use social media in the classroom? Whether you are a teacher or a student, we’d love to know.


The Sound of Silence: NASA Probes Record Earth’s ‘Chorus’

Here’s a question for Science teachers to ask their classes:

If space made a noise, what would it sound like? The reverberations of Neil Armstrong’s footsteps? Space junk clanging together?  The chatter of little green men?

Or perhaps, early morning birdsong?

An illustration of the earth’s magnetosphere, where our planet’s magnetic field collides with charged particles from the Sun.

Yes, unlikely as it is, Earth actually gives off a noise that most liken to birds’ chirping. We know this because when NASA wasn’t busy sending a rover to explore Mars, it created a device to detect the sounds of an atmosphere much closer to home.

Surrounding our planet are rings of plasma… which are pulsing with radio waves. Those waves are not audible to the human ear alone, but radio antennae can pick them up, and that’s just what an instrument — the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) — on NASA’s recently launched Radiation Belt Storm Probes has done.

Scientists have known of Earth’s “chorus” for several decades, but one of the missions of the Probes project has been to uncover the science behind the emissions. The sounds come from a part of Earth’s outer atmosphere called the magnetosphere (pictured above) “an area where charged particles from the sun interact with the earth’s magnetic field.”

Fortunately for us, the radio waves emitted by Earth’s atmosphere occur in the same frequency of sounds we can hear. That means that, once the waves are picked up by a radio transmitter and translated into sound waves, we can listen to the hauntingly beautiful sounds of our home planet, recorded below:

The project will continue for two more years and will also investigate the phenomenon of “space weather,” which actually affects us on the ground by knocking out satellites and power grids. Who knew space suffered weather like the rest of us?

Idea for a Classroom Activity: Earth’s Song

Objective: To help students connect the concepts of magnetic fields and radio waves.

Grade Level: 4-8

Time Needed: 20-30 minutes

Dialogue/Worksheet: Can you imagine what space would sound like if we could listen to it? What kind of sounds do you think we would hear?

(Have students draw Earth and its magnetic field. This activity should follow a unit on magnetism and polarity.)

Did you know that the magnetic field makes a noise when tiny particles from the Sun hit it? We can’t hear this sound just by listening with our ears. We need radio waves to be able to hear it. What kinds of objects detect radio waves?

(Have students list the many different items that pick up radio waves. Ex. radios, baby monitors, garage door openers, cell phones, radio-controlled toys, TVs, wifi, airplanes etc.)

Radio waves make up a a type of sound wave that travels through the air at a frequency humans can’t hear. They travel much faster than the sound waves you hear when I speak. But we can hear them when we use a radio. The antennae pick up radio waves from the air and switch them into sound waves, which we can hear through the speakers. 

Earth’s magnetic field gives off its own noise because radio waves are  electromagnetic. Using a radio antennae, we can pick up this sound and listen to the planet. 

(Play audio of Earth’s chorus.)

What did that sound like to you? Did its sound surprise you? If you could give Earth’s song a name, what would you call it?

Resources:

NASA explains Radio Waves

eNotes Reference Guide: Electricity and Magnetism

eNotes Q&A: Definition of radio waves


Curiosity Killed No-One: A Round-Up of eNotes’ Answers Across 10 Subjects

No matter what subject interests you, eNotes has you covered. Check out these recent answers from our expert editors, below:

Literature:

In Of Mice and Men, who deserves to be punished for Lennie’s death?

History:

What was the Holy Roman Empire?

Science:

What is the final product of translation as a part of protein synthesis?

Math:

Given the sample {7,6,10,7,5,9,3,7,5,13} find the standard deviation.

Arts:

What are the principal characteristics of Baroque art?

Business: How does a subsidy affect a market?

Social Sciences: What is critical race theory?

Law: What social trends will affect the criminal justice system over the next ten years?

Health: Make the argument that individuals with preexisting conditions should be able to purchase health insurance at the same cost as those without such conditions.

Religion: How do theologians address the issue of how we give meaning to the world when a loved one dies?
And an interesting discussion board to chime in on…
Should health insurance plans include infertility services?

“I want to be under the sea”: Google Releases Street View of the Ocean Floor

Attention Jacques Cousteau, Steve Zissou, and general oceanographer wannabes: you can now visit the sea beds of the world from your very computer. That’s because this week Google unveiled its latest addition to Google Maps–“street views” of six of the world’s most breathtaking coral reefs.

Via this new addition, you can now view a  sea turtle swimming among a school of fish in the Great Barrier Reef, follow a manta ray, visit an ancient boulder coral near Apo Island in the Philippines,  join snorkelers in Oahu’s Hanauma Bay, and much more.

To capture these amazing images, Google turned to The Catlin Seaview Survey, whose team members occasionally dive into view of some of the photos.

[The divers] used a specialized SVII camera to capture the images. Every three seconds while traveling at about 2.5 miles/hour, the camera captures a 360-degree panorama with geolocation information and a compass heading. Only two of the cameras are in existence worldwide.

We just had to give it up for the amazing science and technology behind this project, which not only reminds us that the world is an awe-inspiring place, but also allows the landlubbers among us to discover every piece of it.

Looking for interesting Science and Marine Biology Q&A? We’ve got that!

What is a “red tide”?

What are some interesting facts about stingrays?

How does oxygen naturally enter an aquatic ecosystem?

What is the significance of the marine ecosystem on world biology?

What is the difference between fresh-water biology and marine biology?


Follow

Get every new post delivered to your Inbox.

Join 813 other followers